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ABSTRACT

The dynamical evolution of terrestrial planets resembling Mercury in the vicinity of spin-orbit resonances is
investigated using comprehensive harmonic expansions of the tidal torque taking into account the frequency-
dependent quality factors and Love numbers. The torque equations are integrated numerically with a small step
in time, including the oscillating triaxial torque components but neglecting the layered structure of the planet and
assuming a zero obliquity. We find that a Mercury-like planet with a current value of orbital eccentricity (0.2056)
is always captured in 3:2 resonance. The probability of capture in the higher 2:1 resonance is approximately 0.23.
These results are confirmed by a semi-analytical estimation of capture probabilities as functions of eccentricity for
both prograde and retrograde evolutions of spin rate. As follows from analysis of equilibrium torques, entrapment
in 3:2 resonance is inevitable at eccentricities between 0.2 and 0.41. Considering the phase space parameters at the
times of periastron, the range of spin rates and phase angles for which an immediate resonance passage is triggered
is very narrow, and yet a planet like Mercury rarely fails to align itself into this state of unstable equilibrium before
it traverses 2:1 resonance.
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1. INTRODUCTION

Planets of terrestrial type with solid mantles are subject to
triaxial and tidal torques exerted by their host star. A planet
just formed from the protoplanetary disk rotates at a much
higher rate than the rate of its orbital motion. In the course
of millions to billions of years, the secular terms of the tidal
torque cause the planet to spin down. The tidal bulges moving
across the planet at different frequencies result in a gradual
loss of kinetic energy through friction and heating. The energy
dissipation rate is normally so slow that most of the major planets
in the solar system still rotate faster than they revolve around
the Sun, with the exception of Venus with its slow retrograde
rotation and Mercury, which is in a 3:2 spin-orbit resonance
(Pettengill & Dyce 1965). Presumably, the planet traversed a
number of higher-order resonances before it reached this state.
The ultimate, and the most stable, state for a rotating planet
subject to tidal forces is 1:1 resonance, when the rotation rate is
equal to the orbital rate, and the planet is always pointing with
its most elongated dimension toward the star. The dissipation
of the energy of rotation also diminishes the obliquity of the
planet’s equator, gradually aligning the axes of rotation and of
the orbit. Mercury’s dynamical evolution has been much faster
than that of other solar planets, because (1) it is closer to the Sun
and (2) its orbital eccentricity varied in a relatively wide range
and has been higher than the eccentricity of the other close-in
planets. The importance of eccentricity for Mercury’s chaotic
evolution was emphasized by Correia & Laskar (2004, 2009),
who upwardly revised the original estimate of the probability of
capture to the present 3:2 resonance at 7% (Goldreich & Peale
1966).

Mercury can serve as a good model for smaller-mass, rocky
exoplanets, especially those orbiting M dwarfs in their habitable
zones. Although the exact rheology of exoplanets will remain
a matter of speculation for the foreseeable future, it seems
reasonable to adopt the parameters and models obtained for the

Earth and the Moon. The objective of this paper is to investigate
the circumstances of the transition of a Mercury-like planet
with an Earth-like rheology through a high-order spin-orbit
resonance. In this case, the widely accepted approximations
for the value of tidal torque in the vicinity of a resonance
are not applicable. Furthermore, the oscillatory terms of the
force cannot be neglected. We employ high-order expansions
of the torque in harmonics of tidal frequency and powers of
eccentricity, and a relation for the Love number as a function
of tidal frequency in terms of real and imaginary compliances
(Section 2). The resulting differential equation of second order,
which includes both the tidal and triaxial torque components, is
integrated with a step much smaller than the period of rotation,
with the current best estimates for Mercury (Section 3). With
the current value of eccentricity (e = 0.20563), the planet
traverses 2:1 resonance with an estimated probability of 0.77,
and is always captured in 3:2 resonance. The transition is very
fast, accompanied by a significant step-down in the average
rotation rate. In Section 4, more integrations are performed with
the initial rate set to exactly a 2:1 resonance and with various
initial phase angles. It is revealed that such a planet inserted in
resonance almost always stays in it. The actual passage through
resonance can only occur through a tiny area of the phase space
around a phase angle of +π/2 or −π/2. A qualitative physical
explanation for this curious fact is given. We discuss in the
final Section 5 why our model planet is unlikely to traverse
2:1 resonance despite the tightness of the required conditions
to do so. We derive the probabilities of capture in spin-orbit
resonances for both prograde and retrograde evolutions of
spin rate, and compare them with the ranges of equilibrium
eccentricities.

2. HARMONIC EXPANSIONS OF TORQUES

The instantaneous torque acting on a rotating planet is
the sum of the triaxial torque, caused by the quadrupole
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Table 1
Explanation of Notations

Notation Description

ξ Moment of inertia coefficient
R Radius of planet
T Torque
M2 Mass of planet
M1 Mass of star
a Semimajor axis of planet
r Instantaneous distance of planet from star
ν True anomaly of planet
e Orbital eccentricity
M Mean anomaly of planet
B Second moment of inertia
A Third moment of inertia
C Moment of inertia around spin axis
n Mean motion, i.e., 2π/Porb

G Gravitational constant, = 66468 m3 kg−1 yr−2

τM Maxwell time, i.e., ratio of viscosity to unrelaxed rigiditya

μ Unrelaxed rigidity modulus
α Tidal lag responsivity

Note. a For the differences between relaxed and unrelaxed rigidity moduli, see
Efroimsky (2012a, 2012b).

inertial momentum, and the tidal torque, caused by the dynamic
deformation of its body. In neglect of the obliquity (Danby
1962),

θ̈ = TTRI + TTIDE

ξM2R2
(1)

with θ being the sidereal angle of the planet reckoned from the
axis of its largest elongation. All other notations used in this
formula and throughout the paper are explained in Table 1. We
consider the specific but representative case when the obliquity
of the planet’s equator is small (i � 0) and the planet is not
too close to the star (R/a � 1). Neglecting the precession
and nutation of the planet, the triaxial torque is (Danby 1962;
Goldreich & Peale 1966)

TTRI = −3

2
(B − A)n2 a3

r3
sin 2(θ − ν). (2)

Using the comprehensive development of Kaula and Darwin’s
harmonic decomposition of the tidal torque by Efroimsky &
Lainey (2007), Efroimsky & Williams (2009), and Efroimsky
(2012a, 2012b), one can write a simplified equation for the tidal
torque, which we call Efroimsky’s torque

TTIDE = 3

2
GM2

1
R5

a6

4∑
q=−1

G20q(e)
4∑

j=−1

G20j (e)

× [Kc(2, χ220q ) Sign(ω220q) cos ((q − j )M)

+ Ks(2, χ220q ) sin ((q − j )M)], (3)

where the positively defined forcing frequency

χ220q = |ω220q | = |(2 + q)n − 2θ̇ |, (4)

the so-called G-functions of Kaula G20j are related to power se-
ries in eccentricity via Hansen’s coefficients (e.g., Dobrovolskis
1995):

G20j (e) = X−3 2
2+j (e), (5)

and the all-important “quality functions” are

Kc(l, χ ) = − 3

2(l − 1)

Λlχ�(χ )

(�(χ ) + Λlχ )2 + �2(χ )
(6)

Ks(l, χ ) = 3

2(l − 1)

�2(χ ) + �2(χ ) + Λlχ�(χ )

(�(χ ) + Λlχ )2 + �2(χ )
. (7)

Finally, the remaining terms in this equation are

Λl = 4π (2l2 + 4l + 3)R4μ

3lGM2
2

, (8)

and

�(χ ) = χ + χ1−ατ−α
A cos

(απ

2

)
Γ(1 + α)

�(χ ) = − τ−1
M − χ1−ατ−α

A sin
(απ

2

)
Γ(1 + α). (9)

The �(χ ) and �(χ ) functions are the real and imaginary parts
of the complex compliance, respectively. Equation (3) includes
oscillating terms of the tidal torque, q �= j . For a planet similar
to Mercury, these oscillating terms prove very small and can be
safely neglected.1 The results of integration over 20,000 years
were hardly different with or without these terms. Omitting the
oscillating terms of the tidal torque, we arrive at the simplified
expression for the secular part of the torque

TTIDE = 3

2
GM2

1
R5

a6

4∑
q=−1

G2
20q (e)Kc(2, χ220q ) Sign(ω220q).

(10)
Note that expansions (3) and (10) are limited to l = 2.

The higher-order expansion terms (l = 3) are neglected be-
cause the coefficients are at least eight orders of magnitude
smaller than the l = 2 terms for Mercury or similar plan-
ets. The expansion in harmonics of mean anomaly is limited
to the range q, j = −1, 0, . . . , 4 for the ease of compu-
tation, the other terms being much smaller than these six.
For example, G205(0.20563) = 0.019, to be compared with
G200(0.20563) = 0.896, and the rest of the Kaula coefficients
for the omitted terms are even smaller. The crucial differences
between this approach and the previous studies, e.g., by Celletti
et al. (2007), is that more realistic relations are employed here
for the “quality functions” of tidal frequency (Equations (6) and
(7)) with rheological parameters supported by observations and
theory, and that full account is taken of the fast, oscillating terms
of the triaxial torque, which are integrated in a small step.

3. INTEGRATION OF MERCURY

The evolution of Mercury’s spin can be considered as a
template model of a rocky, relatively small planet whose
eccentricity can be driven to sufficiently large values due to the
interactions with larger planets in the system. It is also one of
the few planets whose physical parameters are fairly well known
(Anderson et al. 1987). The parameters used in our computations
are listed in Table 2. The Maxwell time τM was set to Earth’s
value, assuming a similar composition and temperature. The
sensitivity of this crucial parameter to temperature has to be

1 The oscillating components of the tidal torque cannot be neglected for a
nearly spherical planet, i.e., when (B − A)/C is very small.
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Figure 1. Rotation acceleration caused by the secular tidal torque (i.e., j = q in Equation (3), or Equation (10)) on a Mercury-like planet in the vicinity of 2:1
resonance (left) and 3:2 resonance (right). Dramatic variations of the torque are confined to very narrow ranges of frequencies, while the effective torque integrated
over a wider range of frequencies is negative. The variable, antisymmetric part of the torque is caused by the given resonance. The almost constant negative offset is
due to the contribution of other resonances. Despite their appearance on the chosen scale, the functions are smooth and differentiable.

(A color version of this figure is available in the online journal.)

Table 2
Parameters of the Mercury Integration

Parameter Value

ξ 2
5

R 2.44 × 106 m
M2 3.3 × 1023 kg
M1 1.99 × 1030 kg
a 5.79 × 1010 m
e 0.20563
(B − A)/C 1.2 × 10−4

n 26.088 yr−1

τM 500 yr
μ 0.8 × 1011 kg m−1 s−2

α 0.2

taken into account for rocky exoplanets whose interiors may
be significantly hotter. Higher temperatures result in smaller
viscosity and, thus, much shorter Maxwell times. The rigidity
μ was also set to the value for the Earth. The characteristic time
τA is in fact frequency-dependent, and we modeled it as

τA(χ ) = 50000 exp(−χ/0.2) + 500 (11)

in years. This expression is chosen to represent the expected
behavior of τA, which sharply rises toward small frequencies.
However, the results proved quite insensitive to the functional
form of τA. In fact, practically the same conclusions can be
obtained by simply setting τA = τM . Again, this may not be the
case for hotter, less viscous planets.

The tidal torque at a given eccentricity is a slowly varying
function of spin rate everywhere except the vicinity of spin-
orbit resonances θ̇ = (1 + q/2)n. Figure 1 shows in detail the
dependence of the overall angular acceleration θ̈ of the planet
caused by the secular tidal torque only, in the vicinity of 2:1
(q = 2) and 3:2 (q = 1) resonances. Note that the dramatic
changes of tidal torque take place within a very narrow interval
of tidal frequencies. The widely used assumption that θ̈ ∝ −θ̇
is justified only in a vanishingly small range of spin rates, i.e.,
θ̇ ∈ [1.9999977, 2.0000023] n in the case of 2:1 resonance and
for the chosen value of the Maxwell time τM . The amplitude
of the oscillatory triaxial torques outside the 1:1 resonance is
a few orders of magnitude greater than the peak values of the
tidal torque (Figure 2). The scale of free librations, caused by
the triaxial torque, is also a few orders of magnitude greater than
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Figure 2. Rotation acceleration caused by the triaxial torque on a Mercury-like
planet as a function of time at θ̇ = 1.6 n.

(A color version of this figure is available in the online journal.)

the characteristic width of the kink in Figure 1. The net effect
of the secular tidal force integrated over one libration period
is to spin the planet down. This follows from the fact that the
mean value of acceleration at θ̇ = 2n integrated over a much
wider interval than the width of the kink, is negative for these
resonances. The peak torque below the resonance rate tapers off
quickly and becomes negative at θ̇ = 1.999895 n. The torque
function near 3:2 resonance (Figure 1, right) is similar in shape,
but the amplitude is larger and the positive shoulder below the
resonance is much broader. The 1:1 resonance is fundamentally
different from the higher-order counterparts in that the tidal
torque is positive at all rotation rates between 0 and n.

3.1. Probabilities of Capture in 2:1 and 3:2 Resonances

The ordinary differential equation (1) was integrated with a
grid of initial conditions θ (0), θ̇ (0) for 30,000–55,000 years
with a maximum step of 2 × 10−3 yr. The initial mean anomaly
was always set to M(0) = 0. For 2:1 resonance, a grid of
40 integrations with θ̇ (0) = 2.013 n and θ (0) = π i/40,
i = 0, 1, . . . , 39 was performed. These integrations resulted
in 9 captures and 31 passages of the resonance. Therefore, the
estimated probability of 2:1 capture is 0.23 at the current value of
eccentricity. The amplitude of free libration gradually increases
as the planet spins down toward the point of resonance. Once a
lower swing in θ̇ reaches the resonance, a fast transition into a

3
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new spin state occurs on a timescale of a few years. The average
rate takes a sudden leap to a significantly smaller value, and the
libration starts to decrease. This set of simulations shows that
the chance of Mercury being captured into the 2:1 resonance at
the current value of eccentricity is modest.

The outcome of integrations in the vicinity of 3:2 resonance is
quite different. A similar set of integrations with θ̇ (0) = 1.518 n
and θ (0) = π i/40, i = 0, 1, . . . , 39 resulted in 40 captures. The
estimated probability of 3:2 capture is 1. As soon as θ̇ reaches
the point of resonance, the amplitude of libration abruptly
doubles, but the mean rotation stays around 1.5 n. Once the
planet is captured, the amplitude of libration starts to slowly
decline. The period of libration starts to decrease immediately
after the capture. A longer integration for 100,000 yr shows
that the period of libration asymptotically approaches 16 yr,
which is the theoretical value (Murray & Dermott 2000) for the
physical parameters listed in Table 2. This confirms the validity
of our computations of the triaxial torque. Further numerical
experiments revealed that the planet traverses 3:2 resonance in
a similar manner to 2:1 resonance at significantly smaller values
of eccentricity. We conclude that our numerical simulations
are consistent with the fact that Mercury is entrapped in a
3:2 resonance with the current value of eccentricity. This
outcome is indeed most likely unless the eccentricity acquired
much different values in the past. An even higher eccentricity
would have resulted in entrapment in a 2:1 resonance long in
the past when the planet was approaching this rotation rate.
Alternatively, a considerably smaller eccentricity at the moment
of approaching 3:2 resonance would have made the planet
traverse it quickly and continue to spin down.

3.2. Equilibrium Torques and Evolution of Eccentricity

Correia & Laskar (2004) pointed out that Mercury’s eccen-
tricity has varied chaotically during its long dynamical evolution
in the solar system. The current state of Mercury, entrapped in
a 3:2 spin-orbit resonance, is the result of a long history of tidal
and orbital interactions, probably marked by multiple passages
of spin-orbit resonances. In particular, if the initial spin rate
of Mercury was much greater than it is today, the planet has
successfully traversed a number of higher resonances. Under-
standing the dependence of tidal torque on eccentricity in the
framework of Efroimsky’s model is as important as the truthful
estimation of capture probabilities in each resonance.

Correia & Laskar (2004, 2009) employed a linear torque
model, also known as MacDonald’s torques (Goldreich &
Peale 1966) or the Constant Phase Lag model (Ferraz-Mello
et al. 2008), in which the secular torque is linearly dependent
on the time derivative of tidal frequency. As we noted in
Section 3, Efroimsky’s torque is linear only in vanishingly
narrow intervals around resonances (Figures 1(a) and (b)).
The widely used assumption that the secular tidal torque
is linear everywhere across the range of relative spin rates
θ̇/n leads to well-known problems and inconsistencies. For
example, a slowing down Moon in the absence of quadrupole
momentum is not allowed to descend into 1:1 resonance
(synchronous rotation) for any nonzero eccentricity (Murray &
Dermott 2000; Williams & Efroimsky 2012), because the linear
torque, monotonously increasing with growing eccentricity,
changes sign from negative to positive at a certain equilibrium
eccentricity for any fixed θ̇/n > 1. Therefore, a perfectly
spherical Moon should have stalled in its de-spinning at a higher
than synchronous rate, namely, θ̇equ/n = 1 + 6e2 = 1.018.
This is not the case for Efroimsky’s tidal torque, which sharply
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Figure 3. Equilibrium eccentricity of a Mercury-like planet separating the areas
of negative (spin-down) and positive (spin-up) secular tidal torque for a grid of
relative rates of rotation. The smooth curve represents the linear torque widely
used in the literature. The jagged curve represents Efroimsky’s torque.

(A color version of this figure is available in the online journal.)

decreases at supersynchronous rotation rates, counteracting the
effects of eccentric motion. The dependence of equilibrium
eccentricity, whence the linear torque disappears, for a range
of rotation rates is depicted in Figure 3 with the monotonously
rising dotted line. It implies that synchronous rotation, so
commonly observed among the satellites of the solar system,
is not attainable for any nonzero eccentricity. If Mercury
traversed 3:2 resonance and continued to spin down toward
synchronization, it would be stuck at an equilibrium rate of
1.24 n with the current value of eccentricity.

The character of equilibrium torques is profoundly different
with Efroimsky’s model, depicted with the jagged dotted curve
in Figure 3. The curve was obtained by finding the roots of
Equation (10) in e for a grid of θ̇/n. The grid resolution is
chosen such that only the slow variations of the equilibrium
eccentricity outside the resonances are faithfully represented.
The first jump from eequ = 0 at θ̇/n = 1 to eequ ≈ 0.29
just slightly above the synchronous rate implies that Mercury
is allowed to be captured in 1:1 resonance if the eccentricity
is not too large (e < 0.29), evolving either from slower or
faster rotation rates. Likewise, entrapment in 3:2 resonance is
inevitable for 0.2 < e < 0.41 if Mercury reaches this rate of
rotation from either direction. This is consistent with the results
of numerical simulations in Section 3.1 that the probability of
3:2 capture with the current value of eccentricity is 1. What
happens if Mercury reaches θ̇/n = 1.5 with an eccentricity
below 0.2? Capture is still possible, but the probability declines
with decreasing eccentricity (see Section 5). Entrapment of the
planet in 2:1 resonance is inevitable for 0.34 < e < 0.49, etc.
The teeth of the equilibrium torque curve act as very efficient
resonance traps for a planet like Mercury, whose eccentricity
varies in a fairly wide range over billions of years of dynamical
evolution.

4. CONDITIONS OF TRAVERSING A RESONANCE

The purpose of our next set of simulations is to find out under
which circumstances the planet traverses a spin-orbit resonance.
We have established that the test planet passes the point θ̇ = 2 n
quite quickly, within several years. At some moment during this
passage, the planet is at periastron with a rotation rate close to
2 n. What is the rotation angle θ at this time, and does this value
matter for the way this dynamical transformation unfolds? One

4
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Figure 4. Results of integration of the Mercury-like test planet with initial
conditions of resonance, θ̇(0) = 2 n, θ (0) = 0. The spin rate remains in
resonance with the orbital motion indefinitely long.

(A color version of this figure is available in the online journal.)

hundred integrations were conducted with the planet initially
already at resonance spin rate (θ̇ (0) = 2 n), but with initial
phase angles ranging from −π/2 to +π/2 in equal steps. For
most of the interval of possible initial angles, the planet is clearly
captured in resonance, i.e., the spin rate continues to oscillate
around the resonant value. A typical example of such entrapment
with the initial conditions θ̇(0) = 2 n, θ (0) = 0, is shown in
Figure 4. The rate of rotation oscillates around the resonant point
roughly between 1.9996 n and 2.0006 n, seemingly forever.
The oscillations (not resolved in the figure) are distinctly non-
sinusoidal immediately after the capture. The amplitude of these
oscillations slowly declines with time. The tidal bulge still runs
across the circumference of the planet with a period equal to the
orbital period; therefore, the tidal dissipation of energy goes on.
A slow shrinkage of the orbit is the main source of tidal energy
for a planet captured in spin-orbit resonance.

The result is drastically different if we set the initial conditions
to θ̇ (0) = 2 n, θ (0) = π/2 (Figure 5). After a couple of
upward swings, the spin rate jumps through the resonance point
in ∼ 80 years. The spin rate resets abruptly at considerably
lower mean values. The peak rates never quite reach the
resonance value, gradually diminishing with time. A sidereal
angle θ = ±π/2 at M = 0 implies that the planet is positioned
sidewise with respect to the star, that is, its longer dimension
is perpendicular to the Sun–planet line. This is the preferred
configuration, which is necessary for the planet to traverse
resonance. The range of suitable phase angles at θ̇ (0) = 2 n and
M(0) = 0, which make it possible for the planet to traverse the
resonance, is quite small, approximately between π/2 − 0.030
and π/2 + 0.021. Remarkably, at any other θ (0) in [0, π ], the
planet remains entrapped in this resonance. Thus, the passage
through resonance cannot occur unless the planet is turned
almost sidewise with respect to the star at one of the periastrons.
A stronger tidal dissipation during the last circulation before
resonance would not allow the planet to reach this range, and
capture becomes inevitable.

Such strong requirements for the orientation of the planet
at the point of resonance may seem puzzling at first glance.
However, simple qualitative considerations of the interaction of
the tidal and triaxial torques explain the matter. Let us consider
a triaxial planet in a resonance 2θ̇ = (2 +q)n, so that for each of
the two orbital revolutions, it makes exactly 2+q rotations about
its axis. Assume θ (0) = 0 at an initial periastron passage, so that
the longest dimension is aligned with the instantaneous direction
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Figure 5. Similar to Figure 4, but with a different initial phase angle, θ (0) = π/2.
The planet traverses the resonance after a couple of libration oscillations, in less
than 100 yr.

(A color version of this figure is available in the online journal.)

to the star. After two complete orbital revolutions, the planet
arrives at periastron with a slight lag in phase angle because
the tidal torque decelerated the planet’s rotation. The planet
therefore is tilted opposite from the spin direction. The triaxial
torque will act to re-align the planet again, so that the average
action from the triaxial torque is to spin up the planet again.
This counteraction of the triaxial torque is symmetric, in that
if the planet’s spin accelerated during the two complete orbits
the torque will rectify its rotation. Thus, any deviation of spin
rate from the resonance value will be automatically corrected by
the triaxial torque. The planet is trapped in a stable equilibrium.
This is not the case when the initial angle at periastron is ±π/2.
Any net lag in phase angle will cause a nonzero triaxial torque in
the same direction, causing the planet to continue to spin down.
In this configuration of unstable equilibrium, the torque assists
the tides to swiftly turn the planet around and lunge through the
resonance.

The same mechanics work for a circular orbit (e = 0). One
may ask then, how a planet initially at θ (0) = 0 can be entrapped
at all, if at some point afterward it inevitably turns sidewise
with respect to the star? The answer is that while the planet
turns through π/2 with respect to the star, the spin rate will
change because of the triaxial torque, and will no longer be
equal to (1 + q/2)n. In other words, the condition of resonance
passage is a certain area of the two-dimensional phase space.2

Returning to Figure 5, we note that the point of the phase space
{θ (0) = π/2, θ̇ (0) = 2 n} does not actually belong to this
area, because the passage through resonance is not immediate.
Indeed, the planet has to realign its phase space parameters in
two upward swings before it traverses the resonance at about 80
yr after the start of integration. In order to map the phase space of
immediate resonance passages, we performed several hundred
short-term integrations (for 1000 yr) varying the initial θ̇ (0) with
a step of 5 × 10−5n and θ (0) with a step of 1 × 10−5 rad. The
mapped section of this space for our Mercury-like planet and
2:1 resonance is shown in Figure 6 as a green-shaded area. If the
planet at periastron turns up within the green area, it immediately
traverses resonance. This “green corridor” is extremely narrow
in θ at θ̇/n > 2 and occupies a tiny fraction of the phase space.
The black dots display the periastron positions of the planet.
The dots are lined up in five consecutive libration trajectories,

2 In fact, the relevant phase space is three-dimensional if we include the
initial mean anomaly M(0), but for simplicity of analysis, we restricted our
study to the plane {θ, θ̇} by considering only the instances of periastron.
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Figure 6. Small section of the {θ, θ̇} phase space around the 2:1 spin-orbit
resonance. The green-shaded area is the subspace of initial parameters from
which a direct passage through resonance takes place. The dots show consecutive
periastron positions of the test planet. Parts of four libration swings gradually
approaching the point of resonance are visible before the final trajectory hits
the passage area and follows it through resonance into the domain of lower spin
rates, θ̇ < 2 n.

(A color version of this figure is available in the online journal.)

each following one probing lower spin rates around θ = π/2.
The final lap hits the “needle’s eye” and falls through resonance,
never to return to it. Note that the next to last trajectory actually
reached θ̇ = 2 n at θ very close to π/2, but the tipping point is
at a slightly smaller θ .

5. DISCUSSION

The area of the phase space above the resonant spin rate,
through which a Mercury-like planet can traverse a resonance,
is very narrow. For example, the appropriate phase angle at
periastron for θ̇ = 2 n should be between π/2 − 0.03065 and
π/2−0.02575. It may appear improbable that the planet, driven
by the relatively large triaxial torques, and wandering through a
good part of the phase space in its pre-resonance evolution, can
hit this very small passage opening. And yet, as we established
through many numerical integrations, the test planet in most
cases passes resonances higher than 3:2, if the integration starts
well above the resonant spin rate. The camel rarely fails to go
through this needle’s eye.

In the domain of above-resonance spin rates, the passage
area extends almost along a straight line toward higher θ̇/n
and smaller θ . Figure 6 shows only a segment of this area. The
needle’s eye area looks more like a needle, stretching out to at
least θ = π/2 − 0.9031, θ̇/n = 2.009, tapering off to a point.
On the other hand, the lower extents of libration swings tend
to probe the area of unstable equilibrium, i.e., the minimum
point of each trajectory is close to θ = π/2. This important
fact follows from the integral of energy for free librations in
the vicinity of a resonance q averaged over one orbital period
(Murray & Dermott 2000), which can be written as

1

4
C γ̇ 2 − 3

2
n2(B − A)G20q(e) cos(γ ) = E0, (12)

where γ = 2θ − (2 + q)M and E0 is a constant energy.
When the rate of rotation is still faster than the resonant value,
2θ̇ > (2 + q)n, but it is at the minimum of a libration swing,
θ̇ = min, the cosine in this equation should be equal to −1,
hence, γ = π . At the times of periastron, the corresponding
value of θ is π/2. Figures 7(a) and (b) show larger parts of the
phase space in the vicinity of a 2:1 resonance passage and a
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Figure 7. Phase space position at times of periastron of a planet passing through
2:1 resonance (top) and captured in 3:2 resonance (bottom).

3:2 resonance capture, respectively. In the case of passage, the
trajectory lunges through the opening depicted in Figure 6 from
the upper zone of circulation to the lower zone of circulation,
reversing its direction. In the case of capture, the trajectory
breaches the separatrix between the upper circulation zone and
the central zones of pure libration where it follows gradually
tightening loops.

The analogy to a rotating pendulum by Goldreich & Peale
(1968) can help us to qualitatively understand the alignment
required for the planet to traverse resonance. The pendulum
is swinging over the top of its support, while a secular torque
is slowing down its rotation. Inevitably, the pendulum loses
enough rotational energy to be unable to pass the highest point
and for a while stops close to the highest point, after which it
starts to rotate in the opposite direction, but the secular torque
acts in the same direction, this time assisting the pendulum
in passing the top in the counterdirection. Once the average
γ̇ changed sign, the pendulum continues to rotate in the
counterdirection with acceleration. This also explains why the
trajectories in Figure 6 are so flat at the minima of the libration
oscillations. Descending step by step to lower spin rates at each
libration swing, the trajectories can hardly avoid catching on the
nearly linear area of immediate passage through resonance.

This remarkable fact can be further elucidated by analysis of
capture probabilities following the lines in Goldreich & Peale
(1966). First, we note that the secular tidal torque in the vicinity
of a resonance q ′ (Equation (10)) can be split into two parts,
one including the q = q ′ term and the other the rest of the sum.
The q = q ′ term is an odd function of ω220q ′ around zero tidal
frequency. The other term, which we call bias, is to a very good
approximation constant with ω220q ′ , because it is the sum of all
other secular torques at resonances outside q ′. These resonances
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are spaced by n in γ̇ = −ω220q ′ , whereas the amplitude of
librations close to a resonance is much smaller (Figures 4
and 5). Figures 1(a) and (b) show that the bias is negative for the
given eccentricity, implying a (nearly) frequency-independent
dissipation of rotation energy. It is sufficient to consider two
librations around the point of resonance γ̇ = 0, i.e., the last
libration with positive γ̇ and the first libration with negative γ̇ .
Goldreich & Peale (1966) noted that if the energy offset from
zero at the beginning of the last libration above the resonance
is uniformly distributed between 0 and ΔE = ∫ 〈T 〉γ̇ dt , where
〈T 〉 is the secular torque, the probability of capture is

Pcapt = δE

ΔE
, (13)

with δE being the total change of kinetic energy at the end of the
libration below the resonance. Thus, 〈T 〉γ̇ should be integrated
over one cycle of libration to obtain ΔE, and over two librations
symmetric around the resonance ω220q ′ = 0 to obtain δE. As a
result, the odd part of the tidal torque at q = q ′ doubles in the
integration for δE, whereas the bias vanishes. For the secular
torque in Equation (10), using the singular separatrix solution
of zero energy3

γ̇ = 2 n

[
3(B − A)

C
G20q ′ (e)

] 1
2

cos
γ

2
, (14)

we obtain

Pcapt = 2

1 + 2πV/
∫ π

−π
W (γ̇ )dγ

(15)

where

V =
∑

q

G2
20q(e)Kc(2, |q − q ′|n) Sign(q − q ′)

W (γ̇ ) = − G2
20q ′ (e)Kc(2, γ̇ ). (16)

We included the term q = q ′ for bias V pro forma, because
Kc(2, 0) = 0. The integral in Equation (15) can be computed
numerically using Equation (14). The results of this semi-
analytical estimation of capture probability as a function of
eccentricity are presented in the top panel of Figure 8. It is
gratifying to see that they are in agreement with the results of
brute-force simulations discussed in Section 3.1. At e = 0.205,
the probability of capture in a 3:2 resonance is 1, and the prob-
ability of capture in a 2:1 resonance is approximately 0.3.

This fast way of computing capture probabilities can be
applied to exoplanets of terrestrial composition, keeping in
mind that the probabilities depend on the degree of triaxiality
through the parameter (B − A)/C in the equation of separatrix
(Equation (14)). Even the smallest exoplanets discovered to date
tend to be larger than the Earth because of an observational
selection effect. Larger rocky planets are likely to be more
axially symmetric. For smaller (B − A)/C, keeping all other
parameters the same, the curves of capture probabilities in
Figure 8 become steeper, so that guaranteed capture is achieved
at smaller minimal eccentricities. This is to be expected because
if the triaxial torque is turned off in Equation (1), capture is
inevitable at any resonance where the tidal torque changes sign.
For example, the minimal eccentricities of inevitable capture of
a Mercury-like planet with (B − A)/C = 1.2 × 10−7 drop to
0.08 for 3:2, 0.20 for 2:1, and 0.30 for 5:2 resonances.

3 Note that our γ is twice the γ in Goldreich & Peale (1966).
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Figure 8. Probability of capture of a Mercury-like terrestrial planet in 3:2, 2:1,
and 5:2 spin-orbit resonances. Top: prograde evolution when the tidal torque is
generally negative and the planet is spun down. Bottom: retrograde evolution
when the tidal torque is generally positive and the planet is spun up.

(A color version of this figure is available in the online journal.)

Wieczorek et al. (2011) provided observational evidence that
Mercury was previously captured in a synchronous rotation. The
authors of this paper explain that this possibility is achievable
if the planet started its evolution with a retrograde rotation. The
secular tidal torque in this case spins the planet up, first making
the rotation prograde, and then driving the planet toward 1:1
resonance. Once captured in synchronous resonance, Mercury
could have remained there for an extended period of time, until
a fortuitous large impact drove it out of the resonance, abruptly
increasing its rate of rotation. Under these circumstances, the
planet then could have crossed higher resonances in an upward
order. Since the previous consideration of capture probabili-
ties via energy balance is completely symmetric with respect to
the direction of γ̇ , Figure 8, top panel, is valid for the reverse
crossing of resonances for eccentricities below the equilibrium
values. However, more stringent conditions of such retrograde
evolution come from the consideration of equilibrium torques
in Section 3.2. As follows from Figure 3, a strong impact would
not be sufficient for Mercury to leave 1:1 resonance. The orbital
eccentricity at the time should be greater than 0.29 to over-
come the first barrier of equilibrium torque. Furthermore, the
eccentricity should remain above 0.20 for a continuous spin-up
to the point of 3:2 resonance. There, Mercury is guaranteed to
be captured at any eccentricity between 0.20 and 0.41, because
the planet would not be able to spin up any further, whereas
the probability of capture at e > 0.41 begins to decline with
growing eccentricity. Figure 8, bottom panel, shows the proba-
bilities of capture in 3:2, 2:1 and 5:2 resonances for a retrograde
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evolution of spin rate, and for eccentricities exceeding the up-
per limits of the equilibrium torque.4 Thus, Efroimsky’s tidal
model described in this paper does not rule out the hypothesis
by Wieczorek et al. (2011), but requires, beside the external ac-
tion, fairly high values of orbital eccentricity during the ascent
to the current 3:2 resonance.

The computations presented in this paper for Efroimsky’s
model of tidal torque serendipitously resolved the long-standing
conundrum of Mercury’s capture into 3:2 resonance. The pre-
vious approximations of tidal torque (Goldreich & Peale 1968;
Murray & Dermott 2000) either predicted a low probability of
this capture with the current value of eccentricity, or were not
able to reproduce the libration damping. Our initial computa-
tions imply that the probability of entrapment of Mercury in 3:2
resonance with the current value of eccentricity is 100%. No
other outcome would have been possible unless the eccentricity
acquired much smaller values in the past, or Mercury’s initial
rotation was retrograde. A higher eccentricity likely could have
resulted in entrapment in 2:1 resonance far in the past when the
planet was approaching this rotation rate.

I thank the USNO Editorial Board for helpful suggestions
and a critical reading of the original version of the paper. Dr.

4 Computation of capture probabilities for retrograde evolution by
Equation (15) is technically difficult because the Kaula functions vary rapidly
at high eccentricities. It is necessary to include more terms in the sum in
Equation (10), e.g., q = −2,−1, . . . , 8.

M. Efroimsky inspired this paper and generously shared his
insight in the mechanics of tides.
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